Skip Navigation
Skip to contents

Cancer Res Treat : Cancer Research and Treatment

OPEN ACCESS

Search

Page Path
HOME > Search
3 "Bun Kim"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Articles
Gastrointestinal cancer
Fecal Microbial Dysbiosis Is Associated with Colorectal Cancer Risk in a Korean Population
Jeongseon Kim, Madhawa Gunathilake, Hyun Yang Yeo, Jae Hwan Oh, Byung Chang Kim, Nayoung Han, Bun Kim, Hyojin Pyun, Mi Young Lim, Young-Do Nam, Hee Jin Chang
Cancer Res Treat. 2025;57(1):198-211.   Published online July 26, 2024
DOI: https://doi.org/10.4143/crt.2024.382
AbstractAbstract PDFSupplementary MaterialPubReaderePub
Purpose
The association between the fecal microbiota and colorectal cancer (CRC) risk has been suggested in epidemiologic studies. However, data from large-scale population-based studies are lacking.
Materials and Methods
In this case-control study, we recruited 283 CRC patients from the Center for Colorectal Cancer, National Cancer Center Hospital, Korea to perform 16S rRNA gene sequencing of fecal samples. A total of 283 age- and sex-matched healthy participants were selected from 890 cohort of healthy Koreans that are publicly available (PRJEB33905). The microbial dysbiosis index (MDI) was calculated based on the differentially abundant species. The association between MDI and CRC risk was observed using conditional logistic regression. Sparse Canonical Correlation Analysis was performed to integrate species data with microbial pathways obtained by PICRUSt2.
Results
There is a significant divergence of the microbial composition between CRC patients and controls (permutational multivariate analysis of variance p=0.001). Those who were in third tertile of the MDI showed a significantly increased risk of CRC in the total population (odds ratio [OR], 6.93; 95% confidence interval [CI], 3.98 to 12.06; p-trend < 0.001) compared to those in the lowest tertile. Similar results were found for men (OR, 6.28; 95% CI, 3.04 to 12.98; p-trend < 0.001) and women (OR, 7.39; 95% CI, 3.10 to 17.63; p-trend < 0.001). Bacteroides coprocola and Bacteroides plebeius species and 12 metabolic pathways were interrelated in healthy controls that explain 91% covariation across samples.
Conclusion
Dysbiosis in the fecal microbiota may be associated with an increased risk of CRC. Due to the potentially modifiable nature of the gut microbiota, our findings may have implications for CRC prevention among Koreans.

Citations

Citations to this article as recorded by  
  • Quantification of Naturally Occurring Prebiotics in Selected Foods
    Arianna Natale, Federica Fiori, Federica Turati, Carlo La Vecchia, Maria Parpinel, Marta Rossi
    Nutrients.2025; 17(4): 683.     CrossRef
  • 2,156 View
  • 200 Download
  • 1 Web of Science
  • 1 Crossref
Close layer
Magnetic Resonance-Based Texture Analysis Differentiating KRAS Mutation Status in Rectal Cancer
Ji Eun Oh, Min Ju Kim, Joohyung Lee, Bo Yun Hur, Bun Kim, Dae Yong Kim, Ji Yeon Baek, Hee Jin Chang, Sung Chan Park, Jae Hwan Oh, Sun Ah Cho, Dae Kyung Sohn
Cancer Res Treat. 2020;52(1):51-59.   Published online May 7, 2019
DOI: https://doi.org/10.4143/crt.2019.050
AbstractAbstract PDFSupplementary MaterialPubReaderePub
Purpose
Mutation of the Kirsten Ras (KRAS) oncogene is present in 30%-40% of colorectal cancers and has prognostic significance in rectal cancer. In this study, we examined the ability of radiomics features extracted from T2-weighted magnetic resonance (MR) images to differentiate between tumors with mutant KRAS and wild-type KRAS.
Materials and Methods
Sixty patients with primary rectal cancer (25 with mutant KRAS, 35 with wild-type KRAS) were retrospectively enrolled. Texture analysis was performed in all regions of interest on MR images, which were manually segmented by two independent radiologists. We identified potentially useful imaging features using the two-tailed t test and used them to build a discriminant model with a decision tree to estimate whether KRAS mutation had occurred.
Results
Three radiomic features were significantly associated with KRASmutational status (p < 0.05). The mean (and standard deviation) skewness with gradient filter value was significantly higher in the mutant KRAS group than in the wild-type group (2.04±0.94 vs. 1.59±0.69). Higher standard deviations for medium texture (SSF3 and SSF4) were able to differentiate mutant KRAS (139.81±44.19 and 267.12±89.75, respectively) and wild-type KRAS (114.55±29.30 and 224.78±62.20). The final decision tree comprised three decision nodes and four terminal nodes, two of which designated KRAS mutation. The sensitivity, specificity, and accuracy of the decision tree was 84%, 80%, and 81.7%, respectively.
Conclusion
Using MR-based texture analysis, we identified three imaging features that could differentiate mutant from wild-type KRAS. T2-weighted images could be used to predict KRAS mutation status preoperatively in patients with rectal cancer.

Citations

Citations to this article as recorded by  
  • A multicenter study: predicting KRAS mutation and prognosis in colorectal cancer through a CT-based radiomics nomogram
    Manman Li, Yiwen Yuan, Hui Zhou, Feng Feng, Guodong Xu
    Abdominal Radiology.2024; 49(6): 1816.     CrossRef
  • SG-Transunet: A segmentation-guided Transformer U-Net model for KRAS gene mutation status identification in colorectal cancer
    Yulan Ma, Yuzhu Guo, Weigang Cui, Jingyu Liu, Yang Li, Yingsen Wang, Yan Qiang
    Computers in Biology and Medicine.2024; 173: 108293.     CrossRef
  • CHNet: A multi-task global–local Collaborative Hybrid Network for KRAS mutation status prediction in colorectal cancer
    Meiling Cai, Lin Zhao, Yan Qiang, Long Wang, Juanjuan Zhao
    Artificial Intelligence in Medicine.2024; 155: 102931.     CrossRef
  • Assessment of prognostic indicators and KRAS mutations in rectal cancer using a fractional-order calculus MR diffusion model: whole tumor histogram analysis
    Mi Zhou, Hongyun Huang, Deying Bao, Meining Chen, Fulin Lu
    Abdominal Radiology.2024; 50(2): 569.     CrossRef
  • The Role of Predictive and Prognostic MRI-Based Biomarkers in the Era of Total Neoadjuvant Treatment in Rectal Cancer
    Sebastian Curcean, Andra Curcean, Daniela Martin, Zsolt Fekete, Alexandru Irimie, Alina-Simona Muntean, Cosmin Caraiani
    Cancers.2024; 16(17): 3111.     CrossRef
  • A segmentation-based sequence residual attention model for KRAS gene mutation status prediction in colorectal cancer
    Lin Zhao, Kai Song, Yulan Ma, Meiling Cai, Yan Qiang, Jingyu Sun, Juanjuan Zhao
    Applied Intelligence.2023; 53(9): 10232.     CrossRef
  • Rectal MRI Interpretation After Neoadjuvant Therapy
    Natally Horvat, Maria El Homsi, Joao Miranda, Yousef Mazaheri, Marc J. Gollub, Viktoriya Paroder
    Journal of Magnetic Resonance Imaging.2023; 57(2): 353.     CrossRef
  • Association between Dynamic Contrast-Enhanced MRI Parameters and Prognostic Factors in Patients with Primary Rectal Cancer
    Hye Ri Kim, Seung Ho Kim, Kyung Han Nam
    Current Oncology.2023; 30(2): 2543.     CrossRef
  • Virtual biopsy in abdominal pathology: where do we stand?
    Arianna Defeudis, Jovana Panic, Giulia Nicoletti, Simone Mazzetti, Valentina Giannini, Daniele Regge
    BJR|Open.2023;[Epub]     CrossRef
  • Repeatability of radiomics studies in colorectal cancer: a systematic review
    Ying Liu, Xiaoqin Wei, Xu Feng, Yan Liu, Guiling Feng, Yong Du
    BMC Gastroenterology.2023;[Epub]     CrossRef
  • The Role of Radiomics in Rectal Cancer
    Joao Miranda, Natally Horvat, Jose A. B. Araujo-Filho, Kamila S. Albuquerque, Charlotte Charbel, Bruno M. C. Trindade, Daniel L. Cardoso, Lucas de Padua Gomes de Farias, Jayasree Chakraborty, Cesar Higa Nomura
    Journal of Gastrointestinal Cancer.2023; 54(4): 1158.     CrossRef
  • Radiomics and Radiogenomics in Pelvic Oncology: Current Applications and Future Directions
    Niall J. O’Sullivan, Michael E. Kelly
    Current Oncology.2023; 30(5): 4936.     CrossRef
  • Construction of prediction model for KRAS mutation status of colorectal cancer based on CT radiomics
    Yuntai Cao, Jing Zhang, Lele Huang, Zhiyong Zhao, Guojin Zhang, Jialiang Ren, Hailong Li, Hongqian Zhang, Bin Guo, Zhan Wang, Yue Xing, Junlin Zhou
    Japanese Journal of Radiology.2023; 41(11): 1236.     CrossRef
  • Artificial intelligence and radiomics in magnetic resonance imaging of rectal cancer: a review
    Giuseppe Di Costanzo, Raffaele Ascione, Andrea Ponsiglione, Anna Giacoma Tucci, Serena Dell’Aversana, Francesca Iasiello, Enrico Cavaglià
    Exploration of Targeted Anti-tumor Therapy.2023; : 406.     CrossRef
  • Investigating the Feasibility of Predicting KRAS Status, Tumor Staging, and Extramural Venous Invasion in Colorectal Cancer Using Inter-Platform Magnetic Resonance Imaging Radiomic Features
    Mohammed S. Alshuhri, Abdulaziz Alduhyyim, Haitham Al-Mubarak, Ahmad A. Alhulail, Othman I. Alomair, Yahia Madkhali, Rakan A. Alghuraybi, Abdullah M. Alotaibi, Abdullalh G. M. Alqahtani
    Diagnostics.2023; 13(23): 3541.     CrossRef
  • Radiogenomics: Contemporary Applications in the Management of Rectal Cancer
    Niall J. O’Sullivan, Hugo C. Temperley, Michelle T. Horan, Alison Corr, Brian J. Mehigan, John O. Larkin, Paul H. McCormick, Dara O. Kavanagh, James F. M. Meaney, Michael E. Kelly
    Cancers.2023; 15(24): 5816.     CrossRef
  • KRAS status predicted by pretreatment MRI radiomics was associated with lung metastasis in locally advanced rectal cancer patients
    Yirong Xiang, Shuai Li, Maxiaowei Song, Hongzhi Wang, Ke Hu, Fengwei Wang, Zhi Wang, Zhiyong Niu, Jin Liu, Yong Cai, Yongheng Li, Xianggao Zhu, Jianhao Geng, Yangzi Zhang, Huajing Teng, Weihu Wang
    BMC Medical Imaging.2023;[Epub]     CrossRef
  • Segmentation-based multi-scale attention model for KRAS mutation prediction in rectal cancer
    Kai Song, Zijuan Zhao, Jiawen Wang, Yan Qiang, Juanjuan Zhao, Muhammad Bilal Zia
    International Journal of Machine Learning and Cybernetics.2022; 13(5): 1283.     CrossRef
  • A multitask dual‐stream attention network for the identification of KRAS mutation in colorectal cancer
    Kai Song, Zijuan Zhao, Yulan Ma, JiaWen Wang, Wei Wu, Yan Qiang, Juanjuan Zhao, Suman Chaudhary
    Medical Physics.2022; 49(1): 254.     CrossRef
  • Multi-Omic Approaches in Colorectal Cancer beyond Genomic Data
    Emilia Sardo, Stefania Napolitano, Carminia Maria Della Corte, Davide Ciardiello, Antonio Raucci, Gianluca Arrichiello, Teresa Troiani, Fortunato Ciardiello, Erika Martinelli, Giulia Martini
    Journal of Personalized Medicine.2022; 12(2): 128.     CrossRef
  • The application of radiomics in predicting gene mutations in cancer
    Yana Qi, Tingting Zhao, Mingyong Han
    European Radiology.2022; 32(6): 4014.     CrossRef
  • The prognostic effect of PNN in digestive tract cancers and its correlation with the tumor immune landscape in colon adenocarcinoma
    Hui Zhang, Ming Jin, Meng Ye, Yanping Bei, Shaohui Yang, Kaitai Liu
    Journal of Clinical Laboratory Analysis.2022;[Epub]     CrossRef
  • 18F-FDG-PET/MRI texture analysis in rectal cancer after neoadjuvant chemoradiotherapy
    Giulia Capelli, Cristina Campi, Quoc Riccardo Bao, Francesco Morra, Carmelo Lacognata, Pietro Zucchetta, Diego Cecchin, Salvatore Pucciarelli, Gaya Spolverato, Filippo Crimì
    Nuclear Medicine Communications.2022; 43(7): 815.     CrossRef
  • Radiomics model based on multi-sequence MR images for predicting preoperative immunoscore in rectal cancer
    Kaiming Xue, Lin Liu, Yunxia Liu, Yan Guo, Yuhang Zhu, Mengchao Zhang
    La radiologia medica.2022; 127(7): 702.     CrossRef
  • Heteronemin and Tetrac Induce Anti-Proliferation by Blocking EGFR-Mediated Signaling in Colorectal Cancer Cells
    Sukanya Unson, Tung-Cheng Chang, Yung-Ning Yang, Shwu-Huey Wang, Chi-Hung Huang, Dana R. Crawford, Haw-Ming Huang, Zi-Lin Li, Hung-Yun Lin, Jacqueline Whang-Peng, Kuan Wang, Paul J. Davis, Wen-Shan Li
    Marine Drugs.2022; 20(8): 482.     CrossRef
  • Association between Texture Analysis Parameters and Molecular Biologic KRAS Mutation in Non-Mucinous Rectal Cancer
    Sung Jae Jo, Seung Ho Kim, Sang Joon Park, Yedaun Lee, Jung Hee Son
    Journal of the Korean Society of Radiology.2021; 82(2): 406.     CrossRef
  • Actualización de la recomendación para la determinación de biomarcadores en el carcinoma colorrectal. Consenso Nacional de la Sociedad Española de Oncología Médica y de la Sociedad Española de Anatomía Patológica
    Samuel Navarro, Miriam Cuatrecasas, Javier Hernández-Losa, Stefania Landolfi, Eva Musulén, Santiago Ramón y Cajal, Rocío García-Carbonero, Jesús García-Foncillas, Pedro Pérez-Segura, Ramón Salazar, Ruth Vera, Pilar García-Alfonso
    Revista Española de Patología.2021; 54(1): 41.     CrossRef
  • Texture analysis using T1-weighted images for muscles in Charcot-Marie-Tooth disease patients and volunteers
    Ji Hyun Lee, Young Cheol Yoon, Hyun Su Kim, Jae-Hun Kim, Byung-Ok Choi
    European Radiology.2021; 31(5): 3508.     CrossRef
  • Radiomics signature of brain metastasis: prediction of EGFR mutation status
    Guangyu Wang, Bomin Wang, Zhou Wang, Wenchao Li, Jianjun Xiu, Zhi Liu, Mingyong Han
    European Radiology.2021; 31(7): 4538.     CrossRef
  • Radiomics and Magnetic Resonance Imaging of Rectal Cancer: From Engineering to Clinical Practice
    Francesca Coppola, Valentina Giannini, Michela Gabelloni, Jovana Panic, Arianna Defeudis, Silvia Lo Monaco, Arrigo Cattabriga, Maria Adriana Cocozza, Luigi Vincenzo Pastore, Michela Polici, Damiano Caruso, Andrea Laghi, Daniele Regge, Emanuele Neri, Rita
    Diagnostics.2021; 11(5): 756.     CrossRef
  • MRI Radiomics Signature as a Potential Biomarker for Predicting KRAS Status in Locally Advanced Rectal Cancer Patients
    ZhiYuan Zhang, LiJun Shen, Yan Wang, Jiazhou Wang, Hui Zhang, Fan Xia, JueFeng Wan, Zhen Zhang
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • Differentiating TP53 Mutation Status in Pancreatic Ductal Adenocarcinoma Using Multiparametric MRI-Derived Radiomics
    Jing Gao, Xiahan Chen, Xudong Li, Fei Miao, Weihuan Fang, Biao Li, Xiaohua Qian, Xiaozhu Lin
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • Radiomic signature of the FOWARC trial predicts pathological response to neoadjuvant treatment in rectal cancer
    Zhuokai Zhuang, Zongchao Liu, Juan Li, Xiaolin Wang, Peiyi Xie, Fei Xiong, Jiancong Hu, Xiaochun Meng, Meijin Huang, Yanhong Deng, Ping Lan, Huichuan Yu, Yanxin Luo
    Journal of Translational Medicine.2021;[Epub]     CrossRef
  • Systematic Review on the Association of Radiomics with Tumor Biological Endpoints
    Agustina La Greca Saint-Esteven, Diem Vuong, Fabienne Tschanz, Janita E. van Timmeren, Riccardo Dal Bello, Verena Waller, Martin Pruschy, Matthias Guckenberger, Stephanie Tanadini-Lang
    Cancers.2021; 13(12): 3015.     CrossRef
  • Emerging applications of radiomics in rectal cancer: State of the art and future perspectives
    Min Hou, Ji-Hong Sun
    World Journal of Gastroenterology.2021; 27(25): 3802.     CrossRef
  • Spatial-Frequency dual-branch attention model for determining KRAS mutation status in colorectal cancer with T2-weighted MRI
    Yulan Ma, Jiawen Wang, Kai Song, Yan Qiang, Xiong Jiao, Juanjuan Zhao
    Computer Methods and Programs in Biomedicine.2021; 209: 106311.     CrossRef
  • Textural differences based on apparent diffusion coefficient maps for discriminating pT3 subclasses of rectal adenocarcinoma
    Zhi-Hua Lu, Kai-Jian Xia, Heng Jiang, Jian-Long Jiang, Mei Wu
    World Journal of Clinical Cases.2021; 9(24): 6987.     CrossRef
  • 2. Radiomics of MRI
    Koji Sakai
    Japanese Journal of Radiological Technology.2021; 77(8): 866.     CrossRef
  • Radiomics and machine learning applications in rectal cancer: Current update and future perspectives
    Arnaldo Stanzione, Francesco Verde, Valeria Romeo, Francesca Boccadifuoco, Pier Paolo Mainenti, Simone Maurea
    World Journal of Gastroenterology.2021; 27(32): 5306.     CrossRef
  • Role of MRI‑based radiomics in locally advanced rectal cancer (Review)
    Siyu Zhang, Mingrong Yu, Dan Chen, Peidong Li, Bin Tang, Jie Li
    Oncology Reports.2021;[Epub]     CrossRef
  • Development and validation of a MRI-based radiomics signature for prediction of KRAS mutation in rectal cancer
    Yanfen Cui, Huanhuan Liu, Jialiang Ren, Xiaosong Du, Lei Xin, Dandan Li, Xiaotang Yang, Dengbin Wang
    European Radiology.2020; 30(4): 1948.     CrossRef
  • Multi-branch cross attention model for prediction of KRAS mutation in rectal cancer with t2-weighted MRI
    JiaWen Wang, YanFen Cui, GuoHua Shi, JuanJuan Zhao, XiaoTang Yang, Yan Qiang, QianQian Du, Yue Ma, Ntikurako Guy-Fernand Kazihise
    Applied Intelligence.2020; 50(8): 2352.     CrossRef
  • Development and validation of a radiomics model based on T2WI images for preoperative prediction of microsatellite instability status in rectal cancer
    Zixing Huang, Wei Zhang, Du He, Xing Cui, Song Tian, Hongkun Yin, Bin Song
    Medicine.2020; 99(10): e19428.     CrossRef
  • PET/MRI Radiomics in Rectal Cancer: a Pilot Study on the Correlation Between PET- and MRI-Derived Image Features with a Clinical Interpretation
    Barbara Juarez Amorim, Angel Torrado-Carvajal, Shadi A Esfahani, Sara S Marcos, Mark Vangel, Dan Stein, David Groshar, Onofrio A Catalano
    Molecular Imaging and Biology.2020; 22(5): 1438.     CrossRef
  • MRI T2-weighted sequences-based texture analysis (TA) as a predictor of response to neoadjuvant chemo-radiotherapy (nCRT) in patients with locally advanced rectal cancer (LARC)
    Filippo Crimì, Giulia Capelli, Gaya Spolverato, Quoc Riccardo Bao, Anna Florio, Sebastiano Milite Rossi, Diego Cecchin, Laura Albertoni, Cristina Campi, Salvatore Pucciarelli, Roberto Stramare
    La radiologia medica.2020; 125(12): 1216.     CrossRef
  • Update of the recommendations for the determination of biomarkers in colorectal carcinoma: National Consensus of the Spanish Society of Medical Oncology and the Spanish Society of Pathology
    P. García-Alfonso, R. García-Carbonero, J. García-Foncillas, P. Pérez-Segura, R. Salazar, R. Vera, S. Ramón y Cajal, J. Hernández-Losa, S. Landolfi, E. Musulén, M. Cuatrecasas, S. Navarro
    Clinical and Translational Oncology.2020; 22(11): 1976.     CrossRef
  • MRI-Based Texture Features as Potential Prognostic Biomarkers in Anaplastic Astrocytoma Patients Undergoing Surgical Treatment
    Yang Zhang, Chaoyue Chen, Yangfan Cheng, Danni Cheng, Fumin Zhao, Jianguo Xu
    Contrast Media & Molecular Imaging.2020; 2020: 1.     CrossRef
  • Preoperative prediction of perineural invasion and KRAS mutation in colon cancer using machine learning
    Yu Li, Aydin Eresen, Junjie Shangguan, Jia Yang, Al B. Benson, Vahid Yaghmai, Zhuoli Zhang
    Journal of Cancer Research and Clinical Oncology.2020; 146(12): 3165.     CrossRef
  • Diffusion-Weighted MRI and Diffusion Kurtosis Imaging to Detect RAS Mutation in Colorectal Liver Metastasis
    Vincenza Granata, Roberta Fusco, Chiara Risi, Alessandro Ottaiano, Antonio Avallone, Alfonso De Stefano, Robert Grimm, Roberta Grassi, Luca Brunese, Francesco Izzo, Antonella Petrillo
    Cancers.2020; 12(9): 2420.     CrossRef
  • CT Radiomics in Colorectal Cancer: Detection of KRAS Mutation Using Texture Analysis and Machine Learning
    Víctor González-Castro, Eva Cernadas, Emilio Huelga, Manuel Fernández-Delgado, Jacobo Porto, José Ramón Antunez, Miguel Souto-Bayarri
    Applied Sciences.2020; 10(18): 6214.     CrossRef
  • Cancer Genotypes Prediction and Associations Analysis From Imaging Phenotypes: A Survey on Radiogenomics
    Yao Wang, Yan Wang, Chunjie Guo, Xuping Xie, Sen Liang, Ruochi Zhang, Wei Pang, Lan Huang
    Biomarkers in Medicine.2020; 14(12): 1151.     CrossRef
  • Diagnostic performance of multiparametric MRI parameters for Gleason score and cellularity metrics of prostate cancer in different zones: a quantitative comparison
    J. Gao, Q. Zhang, C. Zhang, M. Chen, D. Li, Y. Fu, X. Lv, B. Zhang, H. Guo
    Clinical Radiology.2019; 74(11): 895.e17.     CrossRef
  • Ability of Radiomics in Differentiation of Anaplastic Oligodendroglioma From Atypical Low-Grade Oligodendroglioma Using Machine-Learning Approach
    Yang Zhang, Chaoyue Chen, Yangfan Cheng, Yuen Teng, Wen Guo, Hui Xu, Xuejin Ou, Jian Wang, Hui Li, Xuelei Ma, Jianguo Xu
    Frontiers in Oncology.2019;[Epub]     CrossRef
  • The Diagnostic Value of Radiomics-Based Machine Learning in Predicting the Grade of Meningiomas Using Conventional Magnetic Resonance Imaging: A Preliminary Study
    Chaoyue Chen, Xinyi Guo, Jian Wang, Wen Guo, Xuelei Ma, Jianguo Xu
    Frontiers in Oncology.2019;[Epub]     CrossRef
  • 12,155 View
  • 403 Download
  • 55 Web of Science
  • 54 Crossref
Close layer
Nomogram Development and External Validation for Predicting the Risk of Lymph Node Metastasis in T1 Colorectal Cancer
Jung Ryul Oh, Boram Park, Seongdae Lee, Kyung Su Han, Eui-Gon Youk, Doo-Han Lee, Do-Sun Kim, Doo-Seok Lee, Chang Won Hong, Byung Chang Kim, Bun Kim, Min Jung Kim, Sung Chan Park, Dae Kyung Sohn, Hee Jin Chang, Jae Hwan Oh
Cancer Res Treat. 2019;51(4):1275-1284.   Published online January 17, 2019
DOI: https://doi.org/10.4143/crt.2018.569
AbstractAbstract PDFSupplementary MaterialPubReaderePub
Purpose
Predicting lymph node metastasis (LNM) risk is crucial in determining further treatment strategies following endoscopic resection of T1 colorectal cancer (CRC). This study aimed to establish a new prediction model for the risk of LNM in T1 CRC patients.
Materials and Methods
The development set included 833 patients with T1 CRC who had undergone endoscopic (n=154) or surgical (n=679) resection at the National Cancer Center. The validation set included 722 T1 CRC patients who had undergone endoscopic (n=249) or surgical (n=473) resection at Daehang Hospital. A logistic regression model was used to construct the prediction model. To assess the performance of prediction model, discrimination was evaluated using the receiver operating characteristic (ROC) curves with area under the ROC curve (AUC), and calibration was assessed using the Hosmer-Lemeshow (HL) goodness-of-fit test.
Results
Five independent risk factors were determined in the multivariable model, including vascular invasion, high-grade histology, submucosal invasion, budding, and background adenoma. In final prediction model, the performance of the model was good that the AUC was 0.812 (95% confidence interval [CI], 0.770 to 0.855) and the HL chi-squared test statistic was 1.266 (p=0.737). In external validation, the performance was still good that the AUC was 0.771 (95% CI, 0.708 to 0.834) and the p-value of the HL chi-squared test was 0.040. We constructed the nomogram with the final prediction model.
Conclusion
We presented an externally validated new prediction model for LNM risk in T1 CRC patients, guiding decision making in determining whether additional surgery is required after endoscopic resection of T1 CRC.

Citations

Citations to this article as recorded by  
  • Risk stratification scores for lymph node metastases in T1 colorectal cancer—A systematic review
    Rakesh Quinn, Giuleta Jamsari, Ewan MacDermid
    Colorectal Disease.2025;[Epub]     CrossRef
  • The critical role of tumor size in predicting lymph node metastasis in early-stage colorectal cancer
    Attila Ulkucu, Metincan Erkaya, Ekin Inal, Emre Gorgun
    The American Journal of Surgery.2025; 241: 116152.     CrossRef
  • Pitfalls during histological assessment in locally resected pT1 colorectal cancer
    Emma J Norton, Adrian C Bateman
    Histopathology.2025;[Epub]     CrossRef
  • Artificial intelligence-based model to predict recurrence after local excision in T1 rectal cancer
    Jiarui Su, Zhiyuan Liu, Haiming Li, Li Kang, Kaihong Huang, Jiawei Wu, Han Huang, Fei Ling, Xueqing Yao, Chengzhi Huang
    European Journal of Surgical Oncology.2025; 51(6): 109717.     CrossRef
  • Prediction of lymph node metastasis in stage I–III colon cancer patients younger than 40 years
    Wei-Hao Zhang, Meng-Di Huang, Yan-Ling Tu, Kun-Zhai Huang, Chao-Jun Wang, Zhao-Hui Liu, Rui-Sheng Ke
    Clinical and Translational Oncology.2025;[Epub]     CrossRef
  • Risk assessment in pT1 colorectal cancer
    Emma Jane Norton, Adrian C Bateman
    Journal of Clinical Pathology.2024; 77(4): 225.     CrossRef
  • Curative criteria for endoscopic treatment of colorectal cancer
    Lucille Quénéhervé, Mathieu Pioche, Jérémie Jacques
    Best Practice & Research Clinical Gastroenterology.2024; 68: 101883.     CrossRef
  • Commentary: An artificial intelligence prediction model outperforms conventional guidelines in predicting lymph node metastasis of T1 colorectal cancer
    Katsuro Ichimasa, Shin-ei Kudo, Khay Guan Yeoh
    Frontiers in Oncology.2024;[Epub]     CrossRef
  • Management after non-curative endoscopic resection of T1 rectal cancer
    Hao Dang, Daan A. Verhoeven, Jurjen J. Boonstra, Monique E. van Leerdam
    Best Practice & Research Clinical Gastroenterology.2024; 68: 101895.     CrossRef
  • A clinical-radiomics nomogram based on spectral CT multi-parameter images for preoperative prediction of lymph node metastasis in colorectal cancer
    Qian Li, Rui Hong, Ping Zhang, Liting Hou, Hailun Bao, Lin Bai, Jian Zhao
    Clinical & Experimental Metastasis.2024; 41(5): 639.     CrossRef
  • A new clinical model for predicting lymph node metastasis in T1 colorectal cancer
    Kai Wang, Hui He, Yanyun Lin, Yanhong Zhang, Junguo Chen, Jiancong Hu, Xiaosheng He
    International Journal of Colorectal Disease.2024;[Epub]     CrossRef
  • Predictors of early colorectal cancer metastasis to lymph nodes: providing rationale for therapy decisions
    Xu Song, Jun Li, Jiang Zhu, Yun-Fei Kong, Yu-Hang Zhou, Zi-Kun Wang, Jin Zhang
    Frontiers in Oncology.2024;[Epub]     CrossRef
  • Approaches and considerations in the endoscopic treatment of T1 colorectal cancer
    Yunho Jung
    The Korean Journal of Internal Medicine.2024; 39(4): 563.     CrossRef
  • A Nomogram for Predicting Unplanned Intraoperative Hypothermia in Patients With Colorectal Cancer Undergoing Laparoscopic Colorectal Procedures
    Lupei Yan, Jingxing Tan, Hao Chen, Han Xiao, Yi Zhang, Qin Yao, Yuerong Li
    AORN Journal.2023;[Epub]     CrossRef
  • A proposal for grading the risk of lymph node metastasis after endoscopic resection of T1 colorectal cancer
    Zhenghua Piao, Rong Ge, Chunnian Wang
    International Journal of Colorectal Disease.2023;[Epub]     CrossRef
  • Nomogram as a novel predictive tool for lymph node metastasis in T1 colorectal cancer treated with endoscopic resection: a nationwide, multicenter study
    Yoshiki Kajiwara, Shiro Oka, Shinji Tanaka, Takahiro Nakamura, Shoichi Saito, Yosuke Fukunaga, Manabu Takamatsu, Hiroshi Kawachi, Kinichi Hotta, Hiroaki Ikematsu, Motohiro Kojima, Yutaka Saito, Masayoshi Yamada, Yukihide Kanemitsu, Shigeki Sekine, Shinji
    Gastrointestinal Endoscopy.2023; 97(6): 1119.     CrossRef
  • CT morphological features for predicting the risk of lymph node metastasis in T1 colorectal cancer
    Suyun Li, Zhenhui Li, Li Wang, Mimi Wu, Xiaobo Chen, Chutong He, Yao Xu, Mengyi Dong, Yanting Liang, Xin Chen, Zaiyi Liu
    European Radiology.2023; 33(10): 6861.     CrossRef
  • Prediction model for lymph node metastasis in superficial colorectal cancer: a better choice than computed tomography
    Chao-Tao Tang, Jun Li, Peng Wang, You-Xiang Chen, Chun-Yan Zeng
    Surgical Endoscopy.2023; 37(10): 7444.     CrossRef
  • Lymph Node Molecular Analysis with OSNA Enables the Identification of pT1 CRC Patients at Risk of Recurrence: A Multicentre Study
    Karmele Saez de Gordoa, Maria Teresa Rodrigo-Calvo, Ivan Archilla, Sandra Lopez-Prades, Alba Diaz, Jordi Tarragona, Isidro Machado, Juan Ruiz Martín, Diana Zaffalon, Maria Daca-Alvarez, Maria Pellisé, Jordi Camps, Miriam Cuatrecasas
    Cancers.2023; 15(22): 5481.     CrossRef
  • Prediction of disease recurrence or residual disease after primary endoscopic resection of pT1 colorectal cancer—results from a large nationwide Danish study
    Ilze Ose, Katarina Levic, Lau Caspar Thygesen, Orhan Bulut, Thue Bisgaard, Ismail Gögenur, Tine Plato Kuhlmann
    International Journal of Colorectal Disease.2023;[Epub]     CrossRef
  • Endoscopic resection alone as a potential treatment method for low-risk deep invasive T1 colorectal cancer
    Yuta Kouyama, Shin-ei Kudo, Katsuro Ichimasa, Shingo Matsudaira, Yushi Ogawa, Kenichi Mochizuki, Yuki Takashina, Yuta Sato, Tatsuya Sakurai, Yasuharu Maeda, Hiroki Nakamura, Masashi Misawa, Yuichi Mori, Toyoki Kudo, Takemasa Hayashi, Kunihiko Wakamura, Te
    iGIE.2023; 2(4): 503.     CrossRef
  • A Retrospective Multicenter Study of Risk Factors, Stratification, and Prognosis of Lymph Node Metastasis in T1 and T2 Colorectal Cancer
    Eui Myung Kim, Il Tae Son, Byung Chun Kim, Jun Ho Park, Byung Mo Kang, Jong Wan Kim
    Journal of Clinical Medicine.2023; 12(24): 7744.     CrossRef
  • Risk and Time Pattern of Recurrences After Local Endoscopic Resection of T1 Colorectal Cancer: A Meta-analysis
    Hao Dang, Nik Dekkers, Saskia le Cessie, Jeanin E. van Hooft, Monique E. van Leerdam, Philip P. Oldenburg, Louis Flothuis, Jan W. Schoones, Alexandra M.J. Langers, James C.H. Hardwick, Jolein van der Kraan, Jurjen J. Boonstra
    Clinical Gastroenterology and Hepatology.2022; 20(2): e298.     CrossRef
  • Lymphatic Node Metastasis Risk Scoring System: A Novel Instrument for Predicting Lymph Node Metastasis After Thymic Epithelial Tumor Resection
    Xinxin Cheng, Yaxin Lu, Sai Chen, Weilin Yang, Bo Xu, Jianyong Zou, Zhenguang Chen
    Annals of Surgical Oncology.2022; 29(1): 598.     CrossRef
  • Current problems and perspectives of pathological risk factors for lymph node metastasis in T1 colorectal cancer: Systematic review
    Katsuro Ichimasa, Shin‐ei Kudo, Hideyuki Miyachi, Yuta Kouyama, Kenichi Mochizuki, Yuki Takashina, Yasuharu Maeda, Yuichi Mori, Toyoki Kudo, Yuki Miyata, Yoshika Akimoto, Yuki Kataoka, Takafumi Kubota, Tetsuo Nemoto, Fumio Ishida, Masashi Misawa
    Digestive Endoscopy.2022; 34(5): 901.     CrossRef
  • Tumor Location as a Prognostic Factor in T1 Colorectal Cancer
    Katsuro Ichimasa, Shin-ei Kudo, Yuta Kouyama, Kenichi Mochizuki, Yuki Takashina, Masashi Misawa, Yuichi Mori, Takemasa Hayashi, Kunihiko Wakamura, Hideyuki Miyachi
    Journal of the Anus, Rectum and Colon.2022; 6(1): 9.     CrossRef
  • Identification of Predictive Factors for Lymph Node Metastasis in pT1 Stage Colorectal Cancer Patients: A Retrospective Analysis Based on the Population Database
    Jiawei Song, Huanhuan Yin, Yong Zhu, Shengqi Fei
    Pathology and Oncology Research.2022;[Epub]     CrossRef
  • Establishment of a Dynamic Nomogram for Predicting the Risk of Lymph Node Metastasis in T1 Stage Colorectal Cancer
    Zitao Liu, Chao Huang, Huakai Tian, Yu Liu, Yongshan Huang, Zhengming Zhu
    Frontiers in Surgery.2022;[Epub]     CrossRef
  • Deep Submucosal Invasion Is Not an Independent Risk Factor for Lymph Node Metastasis in T1 Colorectal Cancer: A Meta-Analysis
    Liselotte W. Zwager, Barbara A.J. Bastiaansen, Nahid S.M. Montazeri, Roel Hompes, Valeria Barresi, Katsuro Ichimasa, Hiroshi Kawachi, Isidro Machado, Tadahiko Masaki, Weiqi Sheng, Shinji Tanaka, Kazutomo Togashi, Chihiro Yasue, Paul Fockens, Leon M.G. Moo
    Gastroenterology.2022; 163(1): 174.     CrossRef
  • Composite scoring system and optimal tumor budding cut-off number for estimating lymph node metastasis in submucosal colorectal cancer
    Jeong-ki Kim, Ye-Young Rhee, Jeong Mo Bae, Jung Ho Kim, Seong-Joon Koh, Hyun Jung Lee, Jong Pil Im, Min Jung Kim, Seung-Bum Ryoo, Seung-Yong Jeong, Kyu Joo Park, Ji Won Park, Gyeong Hoon Kang
    BMC Cancer.2022;[Epub]     CrossRef
  • Lymph node metastasis in T1 colorectal cancer with the only high-risk histology of submucosal invasion depth ≥ 1000 μm
    Yusuke Yamaoka, Akio Shiomi, Hiroyasu Kagawa, Hitoshi Hino, Shoichi Manabe, Kai Chen, Kenji Nanishi, Akifumi Notsu
    International Journal of Colorectal Disease.2022; 37(11): 2387.     CrossRef
  • Subpopulation analysis of survival in high-risk T1 colorectal cancer: surgery versus endoscopic resection only
    Ryun Kyong Ha, Boram Park, Kyung Su Han, Dae Kyung Sohn, Chang Won Hong, Byung Chang Kim, Bun Kim, Sung Chan Park, Hee Jin Chang, Jae Hwan Oh
    Gastrointestinal Endoscopy.2022; 96(6): 1036.     CrossRef
  • Preoperative prediction of lymph node status in patients with colorectal cancer. Developing a predictive model using machine learning
    Morten Hartwig, Karoline Bendix Bräuner, Rasmus Vogelsang, Ismail Gögenur
    International Journal of Colorectal Disease.2022; 37(12): 2517.     CrossRef
  • Preoperative Predictors of Lymph Node Metastasis in Colon Cancer
    Yansong Xu, Yi Chen, Chenyan Long, Huage Zhong, Fangfang Liang, Ling-xu Huang, Chuanyi Wei, Shaolong Lu, Weizhong Tang
    Frontiers in Oncology.2021;[Epub]     CrossRef
  • LASSO-Based Machine Learning Algorithm for Prediction of Lymph Node Metastasis in T1 Colorectal Cancer
    Jeonghyun Kang, Yoon Jung Choi, Im-kyung Kim, Hye Sun Lee, Hogeun Kim, Seung Hyuk Baik, Nam Kyu Kim, Kang Young Lee
    Cancer Research and Treatment.2021; 53(3): 773.     CrossRef
  • Risk Stratification of T1 Colorectal Cancer Metastasis to Lymph Nodes: Current Status and Perspective
    Katsuro Ichimasa, Shin-ei Kudo, Hideyuki Miyachi, Yuta Kouyama, Masashi Misawa, Yuichi Mori
    Gut and Liver.2021; 15(6): 818.     CrossRef
  • Supervised Learning Based Systemic Inflammatory Markers Enable Accurate Additional Surgery for pT1NxM0 Colorectal Cancer: A Comparative Analysis of Two Practical Prediction Models for Lymph Node Metastasis
    Jinlian Jin, Haiyan Zhou, Shulin Sun, Zhe Tian, Haibing Ren, Jinwu Feng
    Cancer Management and Research.2021; Volume 13: 8967.     CrossRef
  • Risk factors and predictors of lymph nodes metastasis and distant metastasis in newly diagnosed T1 colorectal cancer
    Kaibo Guo, Yuqian Feng, Li Yuan, Harpreet S. Wasan, Leitao Sun, Minhe Shen, Shanming Ruan
    Cancer Medicine.2020; 9(14): 5095.     CrossRef
  • Development and external validation of a predictive scoring system associated with metastasis of T1‐2 colorectal tumors to lymph nodes
    Shaobo Mo, Zheng Zhou, Weixing Dai, Wenqiang Xiang, Lingyu Han, Long Zhang, Renjie Wang, Sanjun Cai, Qingguo Li, Guoxiang Cai
    Clinical and Translational Medicine.2020; 10(1): 275.     CrossRef
  • Inverse Association of Age with Risk of Lymph Node Metastasis in Superficial Colorectal Cancer: A Large Population-Based Study
    Qing-Wei Zhang, Long-Ci Sun, Chao-Tao Tang, Qian Liang, Yang-Yang Zhou, Hui-Min Chen, Yun-Jie Gao, Zhi-Zheng Ge
    The Oncologist.2020; 25(6): e920.     CrossRef
  • T1 colorectal cancers: The impact of screening programs on a curable disease
    Adriana Vaz Safatle-Ribeiro
    Digestive and Liver Disease.2020; 52(8): 918.     CrossRef
  • Risk factors and risk prediction models for colorectal cancer metastasis and recurrence: an umbrella review of systematic reviews and meta-analyses of observational studies
    Wei Xu, Yazhou He, Yuming Wang, Xue Li, Jane Young, John P. A. Ioannidis, Malcolm G. Dunlop, Evropi Theodoratou
    BMC Medicine.2020;[Epub]     CrossRef
  • 10,597 View
  • 387 Download
  • 44 Web of Science
  • 42 Crossref
Close layer

Cancer Res Treat : Cancer Research and Treatment
Close layer
TOP