-
Prognostic Factors and Decision Tree for Long-Term Survival in Metastatic Uveal Melanoma
-
Daniel Lorenzo, María Ochoa, Josep Maria Piulats, Cristina Gutiérrez, Luis Arias, Jaume Català, María Grau, Judith Peñafiel, Estefanía Cobos, Pere Garcia-Bru, Marcos Javier Rubio, Noel Padrón-Pérez, Bruno Dias, Joan Pera, Josep Maria Caminal
-
Cancer Res Treat. 2018;50(4):1130-1139. Published online December 4, 2017
-
DOI: https://doi.org/10.4143/crt.2017.171
-
-
Abstract
PDFPubReaderePub
- Purpose
The purpose of this study was to demonstrate the existence of a bimodal survival pattern in metastatic uveal melanoma. Secondary aims were to identify the characteristics and prognostic factors associated with long-term survival and to develop a clinical decision tree.
Materials and Methods
The medical records of 99 metastatic uveal melanoma patients were retrospectively reviewed. Patients were classified as either short (≤ 12 months) or long-term survivors (> 12 months) based on a graphical interpretation of the survival curve after diagnosis of the first metastatic lesion. Ophthalmic and oncological characteristicswere assessed in both groups.
Results
Of the 99 patients, 62 (62.6%) were classified as short-term survivors, and 37 (37.4%) as long-term survivors. The multivariate analysis identified the following predictors of long-term survival: age ≤ 65 years (p=0.012) and unaltered serum lactate dehydrogenase levels (p=0.018); additionally, the size (smaller vs. larger) of the largest liver metastasis showed a trend towards significance (p=0.063). Based on the variables significantly associated with long-term survival, we developed a decision tree to facilitate clinical decision-making.
Conclusion
The findings of this study demonstrate the existence of a bimodal survival pattern in patients with metastatic uveal melanoma. The presence of certain clinical characteristics at diagnosis of distant disease is associated with long-term survival. A decision tree was developed to facilitate clinical decision-making and to counsel patients about the expected course of disease.
-
Citations
Citations to this article as recorded by
- A Systematic Review of Prognostic Factors in Patients with Cancer Receiving Palliative Radiotherapy: Evidence-Based Recommendations
Alexander Tam, Emanuela Scarpi, Marco Cesare Maltoni, Romina Rossi, Alysa Fairchild, Kristopher Dennis, Marcus Vaska, Marc Kerba Cancers.2024; 16(9): 1654. CrossRef - Comparative assessment of the capability of machine learning-based radiomic models for predicting omental metastasis in locally advanced gastric cancer
Ahao Wu, Lianghua Luo, Qingwen Zeng, Changlei Wu, Xufeng Shu, Pang Huang, Zhonghao Wang, Tengcheng Hu, Zongfeng Feng, Yi Tu, Yanyan Zhu, Yi Cao, Zhengrong Li Scientific Reports.2024;[Epub] CrossRef - Impact of Metastatic Pattern on Survival in Patients with Posterior Uveal Melanoma: A Retrospective Cohort Study
Tine G. Hindso, Peter S. Jensen, Mette B. Sjøl, Kristoffer Nissen, Camilla W. Bjerrum, Eric von Benzon, Carsten Faber, Steen F. Urbak, Marco Donia, Inge M. Svane, Eva Ellebaek, Steffen Heegaard, Karine Madsen, Jens F. Kiilgaard Cancers.2024; 16(19): 3346. CrossRef - Orthotopic murine xenograft model of uveal melanoma with spontaneous liver metastasis
Raquel Ramos, Eduard Cabré, Antònia Vinyals, Daniel Lorenzo, Josep R. Ferreres, Mar Varela, Montse Gomá, Maria José Paules, Cristina Gutierrez, Josep M. Piulats, Àngels Fabra, José M. Caminal Melanoma Research.2023; 33(1): 1. CrossRef - Determinants of Long-Term Survival in Metastatic Choroidal and Ciliary Body Melanoma
Elina S. Rantala, Raffaele Parrozzani, Micaela M. Hernberg, Vanna Chiarion-Sileni, Tero T. Kivelä, Edoardo Midena American Journal of Ophthalmology.2023; 246: 258. CrossRef - Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma
Di Wang, Bing Pan, Jin-Can Huang, Qing Chen, Song-Ping Cui, Ren Lang, Shao-Cheng Lyu Frontiers in Oncology.2023;[Epub] CrossRef - Applications of Artificial Intelligence in Ocular Oncology
Bhavna Chawla, Kusumitha B. Ganesh Advances in Ophthalmology and Optometry.2023; 8(1): 111. CrossRef - Differences in glucose metabolic activity in liver metastasis separates two groups of metastatic uveal melanoma patients with different prognosis
Luis P. del Carpio, María Asunción Algarra, Aida Sabaté‐Llobera, Alejo Rodriguez‐Vida, Susana Rossi‐Seoane, Sandra Ruiz, David Leiva, Emilio Ramos, Laura Lladò, Daniel Lorenzo, Cristina Gutierrez, Montserrat Cortes‐Romera, Josep M. Caminal, Josep M. Piula Cancer Medicine.2023; 12(13): 14062. CrossRef - Patients presenting with metastases: stage IV uveal melanoma, an international study
Gaurav Garg, Paul T Finger, Tero T Kivelä, E Rand Simpson, Brenda L Gallie, Svetlana Saakyan, Anush G Amiryan, Vladimir Valskiy, Kimberly J Chin, Ekaterina Semenova, Stefan Seregard, Maria Filì, Matthew Wilson, Barrett Haik, Josep Maria Caminal, Jaume Cat British Journal of Ophthalmology.2022; 106(4): 510. CrossRef - Metastatic uveal melanoma: The final frontier
Elina S. Rantala, Micaela M. Hernberg, Sophie Piperno-Neumann, Hans E. Grossniklaus, Tero T. Kivelä Progress in Retinal and Eye Research.2022; 90: 101041. CrossRef - The Application of Artificial Intelligence in the Analysis of Biomarkers for Diagnosis and Management of Uveitis and Uveal Melanoma: A Systematic Review
Arshpreet Bassi, Saffire H Krance, Aidan Pucchio, Daiana R Pur, Rafael N Miranda, Tina Felfeli Clinical Ophthalmology.2022; Volume 16: 2895. CrossRef - A Multimodal Approach to Discover Biomarkers for Taxane-Induced Peripheral Neuropathy (TIPN): A Study Protocol
Anukriti Sharma, Ken B. Johnson, Bihua Bie, Emily E. Rhoades, Alper Sen, Yuri Kida, Jennifer Hockings, Alycia Gatta, Jacqueline Davenport, Connie Arcangelini, Jennifer Ritzu, Jennifer DeVecchio, Ron Hughen, Mei Wei, G. Thomas Budd, N. Lynn Henry, Charis E Technology in Cancer Research & Treatment.2022;[Epub] CrossRef - Nomogram, Decision Tree and Deep Learning Models to Predict Lymph Node Metastasis of Patients with Early Gastric Cancer: A Multi-Cohort Study
Lulu Zhao, Weili Han, Penghui Niu, Yuanyuan Lu, Fan Zhang, Fuzhi Jiao, Xiadong Zhou, Wanqing Wang, Xiaoyi Luan, Mingyan He, Quanlin Guan, Yu-min Li, Yongzhan Nie, Kaichun Wu, Yingtai Chen SSRN Electronic Journal.2022;[Epub] CrossRef - ALKBH5-mediated m6A demethylation of FOXM1 mRNA promotes progression of uveal melanoma
Lili Hao, Jiayang Yin, Hong Yang, Chaoxuan Li, Linxin Zhu, Lian Liu, Jingxiang Zhong Aging.2021; 13(3): 4045. CrossRef - Impact of staging on survival outcomes: a nationwide real-world cohort study of metastatic uveal melanoma
Elina S. Rantala, Tero T. Kivelä, Micaela M. Hernberg Melanoma Research.2021; 31(3): 224. CrossRef - Classification trees for predicting obesity in school-aged children
E.V. Anufrieva, V.N. Shershnev, O.P. Kovtun Profilakticheskaya meditsina.2021; 24(7): 30. CrossRef - Choroidal Melanoma with Ultrasound-Guided Episcleral Brachytherapy: Long-Term Results and Risk of Metastasis
Beatriz Quiles, Jorge Mataix, José Luis Guinot, Isabel Wang, Victor De los Dolores, Marina Peña, Alonso La Rosa, Maribel Tortajada, Miguel Santos, Leoncio Arribas Ocular Oncology and Pathology.2021; 7(4): 280. CrossRef - Development of a Prognostic Nomogram for Liver Metastasis of Uveal Melanoma Patients Selected by Liver MRI
Pascale Mariani, Sylvain Dureau, Alexia Savignoni, Livia Lumbroso-Le Rouic, Christine Levy-Gabriel, Sophie Piperno-Neumann, Manuel J. Rodrigues, Laurence Desjardins, Nathalie Cassoux, Vincent Servois Cancers.2019; 11(6): 863. CrossRef - Iterative treatment with surgery and radiofrequency ablation of uveal melanoma liver metastasis: Retrospective analysis of a series of very long-term survivors
Vincent Servois, Toufik Bouhadiba, Sylvain Dureau, Carla Da Costa, Mohamed Maher Almubarak, Romain Foucher, Alexia Savignoni, Nathalie Cassoux, Gaelle Pierron, Pascale Mariani European Journal of Surgical Oncology.2019; 45(9): 1717. CrossRef
-
9,099
View
-
272
Download
-
21
Web of Science
-
19
Crossref
|